Time: July 8th (Friday) 10:30
Place: Natural Science Building #702
Speaker: Dr. Myeongju Kang (Seoul National University)
Title: Asymptotic behavior of various synchronization models and their continuum limit
Abstract:
Synchronous behaviors of oscillatory complex systems are ubiquitous in many biological and chemical systems, to name a few, firing of fireflies, synchronization of metronomes, rhythmic beating of pacemaker cells, etc. Famous examples are the Kuramoto model, which is a phase-coupled model, and the Winfree model, which is a pulse-coupled model. Both ode systems describe the time-evolutionary behavior of oscillators on one dimensional torus. Continuum limit is an effective approximation to describe a system with infinitely many particles using integro-differential equation.
In this talk, we first study the emergent dynamics of the particle models. Since solutions of the particle models become simple function valued solutions of the continuum models, analytical results on the time-evolutionary behavior of the particle models can be applied to analyze the continuum models. Especially, we study in what sense sequences of simple functions obtained from the particle models converge to solutions of the continuum models.