[Published in Nonlinearity, 28 (2015), no. 5, 1441-1462.]

This is a joint work with Seung-Yeal Ha and Hwa Kil Kim.

(To see the Kuramoto model)

So far, the previous results on the synchronization for the Kuramoto model had constraints on the initial configurations. The previous researches assumed that the initial positions of oscillators are confined in a half circle: . However, it is known by numerical simulations that the synchronization occurs for any initial configurations with sufficiently large coupling strength , except unstable equilbria. The previous analysis used the diameter as a Lyapunov functional to show the synchronization. We present an improved exponential synchronization estimate by extending the constraint on the initial configuration so that . We use the dynamics of Kuramoto order paremeters defined by

\begin{equation*}\label{order-1}

re^{\mathrm i \phi} := \frac{1}{N} \sum_{j=1}^N e^{\mathrm i \theta_j}

\end{equation*}

The Kuramoto model can be expressed into the following form:

\begin{equation*}\label{Ku-order}

\dot \theta_i = \Omega_i - Kr\sin(\theta_i - \phi)

\end{equation*}

We show that the oscillators contract into a half circle region in finite time.