
EMERGENT DYNAMICS OF WINFREE OSCILLATORS ON LOCALLY

COUPLED NETWORKS

SEUNG-YEAL HA, DONGNAM KO, JINYEONG PARK, AND SANG WOO RYOO

Abstract. The Winfree model is the first mathematical model for synchronization of
weakly coupled oscillators. Compared to the well-known Kuramoto model, the Winfree
model does not conserve the total phase. This leads to rich dynamic features compared to
those produced by other phase models. In this paper, we study the emergent dynamics of
the Winfree model on a locally coupled static network. A randomly chosen phase config-
uration undergoes several dynamic phase transitions such as incoherence, partial locking,
complete locking, partial oscillator death, and complete oscillator death, as the coupling
strength increases. We provide several rigorous analytical results on the emergence of
these dynamic features. We also provide several numerical simulations and compare their
results to the analytical results.

1. Introduction

Collective motions of interacting particle systems are ubiquitous phenomena often ob-
served in complex systems, e.g., the aggregation of bacteria, flocking of birds, swarming of
fish, herding of sheep, and flashing of fireflies [3, 4, 8, 10, 11, 12, 15, 20, 22, 29, 39, 41,
42, 43, 44]. Recently, such collective dynamics have received considerable attention from
many scientific disciplines because of their diverse engineering applications to the decen-
tralized control of unmanned aerial vehicles [5, 6, 16, 23, 27, 33, 32, 31, 36, 37, 38, 40]. In
this paper, we primarily focus on synchronization. Synchronization is the representation of
emerging rhythms in oscillatory systems. First discovered by Huygens in a two pendulum
clock hanging on the same bar, its rigorous mathematical formulation is fairly recent; in
particular, Winfree [44] and Kuramoto [25, 26] formalized the notion of synchronization
fifty years ago. Since then, several phase and pulse-coupled models have been proposed and
extensively studied both analytically and numerically in the literature. Of these studies,
we are interested in the first phase-coupled model for synchronization, namely, the Winfree
model. The Winfree model was first proposed in Arthur Winfree’s senior thesis [44].

Next, we briefly introduce the Winfree phase model. Weakly coupled phase oscillators can
be visualized as rotors moving on the unit circle S1. In this simple representation, the spatial
position of a rotor is determined by its polar angle (phase) using polar coordinates. Let θi =
θi(t) be the phase of the i-th oscillator. Then the phase dynamics of Winfree oscillators are
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governed by the Cauchy problem for the following first-order system of ordinary differential
equations (ODEs):

(1.1)


θ̇i = ωi +K

N∑
j=1

cjiS(θi)I(θj), t > 0, i = 1, . . . , N,

θi(0) = θi0,

where K, ωi, and cji are the positive coupling strength, natural frequency of the i-th oscil-
lator, and communication capacity between the i-th and j-th oscillators, respectively. The
coupling functions S and I measure the sensitivity and influences of oscillators. Throughout
this paper, we assume that the connection topology C = (cij) satisfies symmetricity and
connectedness:

cji ≥ 0, cji = cij , 1 ≤ i, j ≤ N,
for any i, j ∈ {1, · · · , N}, there exists a path between i and j, i. e.,

∃i = k0 → k1 → · · · → km(i,j)
= j such that ckl,kl+1

> 0, l = 0, · · · , km(i,j)−1.

(1.2)

The Winfree model in (1.1) with the special pair (S(θ), I(θ)) = (− sin θ, 1 + cos θ) on
the all-to-all network cji = 1

N has been studied in literature [2, 28, 30, 34, 35]. However,
compared to the extensive work [1, 7, 9, 13, 14, 17, 18, 19] on the Kuramoto model, fewer
research exists on the Winfree model (1.1) because of the lack of conservation of total phase
and translational symmetry. Moreover, the aforementioned literature on (1.1) mostly deals
with the mean-field situation, i.e., an ensemble of infinite Winfree oscillators. To the best of
our knowledge, the first analytical study on the Winfree model with a finite size was studied
in [21]. For distributed natural frequencies, four dynamic phase states can emerge, as the
coupling strength increases from a small value to infinity. More precisely, for a given random
initial phase configuration that is in the incoherent state, the following four dynamic phases
might emerge as the coupling strength increases:

Incoherent state =⇒ Partial locking =⇒ Complete locking

=⇒ Partial oscillator death =⇒ Complete oscillator death.

Of course, some of dynamic phase might not emerge depending on the relative sizes between
the coupling strength and natural frequencies. In [2], the diverse phase states of the dis-
crete Winfree oscillators are studied numerically. In the sequel, the dynamics for Winfree
models with large number of oscillators are considered in [34]

The main purpose of this paper is to provide a rigorous framework for the emergence of
the above dynamic phases in the Winfree model on general symmetric networks. Note that
the emergence of complete oscillator death in Winfree oscillators has already been studied
[21]; however, only the all-to-all network was considered.

The main results of this paper are as follows. First, we present a sufficient condition
leading to partial and complete oscillator deaths in terms of coupling strength, sensitivity,
and influence functions (Theorem 4.1). Second, we prove the existence of an attractor with
a positive Lebesgue measure that absorbs all neighboring configurations in a large-coupling
regime (Proposition 5.1). Third, we provide the exponential `1-stability (Proposition 5.2),
and fourth, we present a sufficient framework for the emergence of a unique equilibrium
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(Theorem 5.1).

The rest of this paper is divided into six sections. In Section 2, we review the Winfree
model on a network and discuss the hidden coupling mechanism in (1.1). We also briefly
discuss the result in [21] for the emergence of complete oscillator death. In Section 3,
we present a subclass of Winfree models that can be reformulated as a gradient flow on
the symmetric network and present a sufficient framework leading to complete oscillator
death. In Section 4, we present a sufficient framework for partial and complete oscillator
deaths in terms of coupling strength and coupling functions. In Section 5, we discuss three
qualitative properties of the Winfree model; specifically, we discuss the existence of an
attractor, exponential `1-stability, and the unique existence of an equilibrium inside the
attractor. In Section 6, we present several numerical simulations and compare them to the
analytical results in Sections 3, 4, and 5. Finally, in Section 7, we briefly summarize our
main results.

Notation: For A = (a1, · · · , aN ) ∈ RN and N ∈ Z+, we set

‖A‖p :=
( N∑
i=1

|ai|p
) 1

p
, 1 ≤ p <∞, ‖A‖∞ := max

1≤i≤N
|ai|, N := {1, · · · , N}.

2. Preliminaries

In this section, we briefly discuss Winfree’s idea for synchronization modeling of the en-
semble of weakly coupled limit-cycle oscillators in (1.1). We also review a previous result
in [21] on the emergence of complete oscillator death in the Winfree model.

First, recall several concepts of dynamic phases in relation to the collective dynamics of

(1.1) in terms of the rotation number ρ := lim
t→∞

θ(t)

t
(see [24]).

Definition 2.1. Let Θ := (θ1, · · · , θN ) be an ensemble of Winfree oscillators whose dynam-
ics are governed by (1.1).

(1) The configuration Θ tends to “complete oscillator death (COD)” if and only if the
rotation numbers of all oscillators are zero, i.e.,

|{i : ρi = 0}| = N,

where |A| is the size of set A.
(2) The configuration Θ tends to “partial oscillator death (POD)” if and only if the

rotation numbers of at least two oscillators are zero. i.e.,

2 ≤ |{i : ρi = 0}| < N.

Note that for POD, not all rotation numbers are zero; if all oscillator rotation
numbers are zero, COD is achieved.

(3) The configuration Θ tends to “complete phase-locked state (CPLS)” if and only if
the rotation numbers of all oscillators are equal and nonzero, i.e., there exists a
nonzero number ρ such that

|{i : ρi = ρ}| = N.
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(4) The configuration Θ tends to “partially phase-locked state (PPLS)” if and only if
there exist at least two oscillators whose rotation numbers are the same, i.e., there
exists a nonzero constant ρ such that

2 ≤ |{i : ρi = ρ}| < N.

Note that for PPLS, not all rotation numbers are the same; if all oscillator rotation
numbers are equal to ρ, CPLS is achieved.

Remark 2.1. For bounded distributed natural frequencies, the phase diagram illustrating
the transition from incoherence to oscillator death in the mean-field setting, using linear
analysis, can be found in [2].

2.1. Network Winfree models. Consider a static symmetric network modeled by the
weighted graph G = (N , E , C). Assume that Winfree oscillators are located on the vertices
of the network G and interact via a connectivity matrix registered by (E , C). In 1967,
Winfree [44] proposed a phase model for the synchronization of weakly coupled limit-cycle
oscillators on the all-to-all network:

E = N ×N , C =
1

N
1,

where 1 is the constant matrix whose elements are unity, i.e., cij = 1
N . To better visualize

this situation, we can view limit-cycle oscillators as point rotors moving on the unit circle
S1. Let θi = θi(t) and ωi be the phase and natural frequency, respectively, of the i-th
oscillator. When there are no mutual interactions between oscillators, the dynamics of the
oscillator phase is completely determined by the natural frequency of the oscillator:

(2.3) θ̇i = ωi, i.e., θi(t) = θi0 + ωit, i = 1, · · · , N.

Thus, the difference between the rotation numbers of oscillators is simply the differences
between natural frequencies:

ρi − ρj = lim
t→∞

θi(t)− θj(t)
t

= ωi − ωj .

Note that for ωi 6= ωj , the rotation numbers ρi and ρj cannot be equal, i.e., entrainment
between the i-th and j-th oscillators does not occur. Thus, the question then arises: how
should coupling be introduced between oscillators to make them entrained? To answer this
question, we review Winfree’s seminal idea. In the presence of mutual interactions, the
dynamics in (3.11) should be supplemented by adding the synchronizing forcing terms, ω̂i
to the right-hand side of (3.11), which registers the weak interactions between oscillators;
that is,

θ̇i = ωi + ω̂i, i = 1, · · · , N.

Let I = I(θ) and S = S(θ) be the influence and sensitivity functions, respectively. More
precisely, I(θ) represents the quantifiable measure of influence on neighboring oscillators
when the test oscillator has the phase θ. S(θ), on the other hand, measures the sensitivity
(response) of the stimulus on neighboring oscillators. Winfree’s pioneering idea for mutual
interactions can be summarized as follows [44].
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• (A1): The stimulus Iic on the i-th oscillator is the weighted sum of neighboring
oscillators’ influences, i.e.,

(2.4) Iic(Θ) :=
N∑
j=1

cjiI(θj).

In this case, two assumptions are made in (2.4). First, the influences of oscillators
are assumed to be propagated without attenuation in time and time-delay, in a time
much shorter than the average period of the oscillators. Second, they are additive
in their effects.

• (A2): The frequency perturbation ω̂i is proportional to the product of the sensitivity
S(θi) and the weighted sum stimulus Ic(Θ):

ω̂i = K S(θi)︸ ︷︷ ︸
response of i-th oscillator

× Iic(Θ)︸ ︷︷ ︸
total stimulus by neighboring oscillators

= KS(θi)
N∑
j=1

cjiI(θj),

where K is the uniform proportional constant, i.e., the uniform coupling strength.

Based on postulates (A1) and (A2), the Winfree model on a network G is as follows:

θ̇i = ωi +K

N∑
j=1

cjiS(θi)I(θj), i ∈ N .

2.2. Emergence of COD in all-to-all networks. Consider the Winfree model in (1.1)
on an all-to-all network with cji = 1

N :

(2.5) θ̇i = ωi +
K

N

N∑
j=1

S(θi)I(θj), i ∈ N , i ∈ N , t > 0.

In [21], a sufficient framework leading to COD is presented. Again, let S and I be the
sensitivity and influence functions, respectively.

• (F1): The sensitivity function S is a 2π-periodic, C2-odd function, and the influence
function I is a 2π-periodic C2-even function; more precisely,

S ∈ C2(R), S(θ + 2π) = S(θ), S(−θ) = −S(θ), θ ∈ R,
I ∈ C2(R), I(θ + 2π) = I(θ), I(−θ) = I(θ).

(2.6)

• (F2): The sensitivity and influence functions satisfy some geometric conditions;
specifically, there exist positive constants θ∗ and θ∗, satisfying

0 < θ∗ < θ∗ < 2π,

such that,

S ≤ 0 on [0, θ∗] and S′ ≤ 0, S′′ ≥ 0 on [0, θ∗],

I ≥ 0, I ′ ≤ 0 on [0, θ∗], and I ′′ ≤ 0 on [0, θ∗],

(SI)′ < 0 on (0, θ∗), (SI)′ > 0 on (θ∗, θ
∗),

(2.7)
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θ
*
=π 2πθ

*

1

0

−1

(a) S(θ) = − sin θ

θ
*
=π 2πθ

*

1

0

2

(b) I(θ) = 1 + cos θ

Figure 1. Schematic diagrams for S(θ) and I(θ).

where S′ denotes the θ-derivative of S (see Figure 1 for schematic graphs of S and
I).

Note that S(0) = 0, and the following special pair (S, I), employed in [2, 30, 34, 35]
satisfy the structural conditions in (2.6) and (2.7):

(2.8) S(θ) = − sin θ, I(θ) = 1 + cos θ, θ∗ =
π

3
, θ∗ = π.

Before we describe our main result, we first introduce some notation. For a given α ∈
(0, θ∗), consider the following equation on the interval [0, θ∗]:

(2.9) (SI)(x) = (SI)(α), x ∈ [0, θ∗].

Note that conditions (2.6) and (2.7) yield the following geometric shape of the coupling
function SI (see Figure 2):

(SI)(0) = 0, θ∗ = argmin0≤θ≤θ∗(SI)(θ),

(SI)(θ) < 0 on θ ∈ (0, θ∗), (SI)(θ∗) ≤ 0.
(2.10)

Thus, (2.9) has a unique solution α∞, guaranteed by (2.10). There is α∞ ∈ (0, θ∗) satisfying
SI(α∞) = SI(α) for α ∈ (θ∗, θ

∗) as in Figure 2(b). For α ∈ (0, θ∗], we have α∞ = α as in
Figure 2(a). For such α∞, we define the coupling strength Ke(α

∞) and a set R(α∞) as
follows:

Ke(α
∞) := − maxi |ωi|

S(α∞)I(α∞)
and

R(α∞) := {Θ = (θ1, · · · , θN ) ∈ RN | θi ∈ (−α∞, α∞), i = 1, . . . , N}.

Theorem 2.1. [21] Suppose conditions (2.6) and (2.7) hold. For α ∈ (0, θ∗), let Θ = Θ(t)
be a global smooth solution to system (2.5), satisfying

Θ0 ∈ R(α) and K > Ke(α
∞).
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θ
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(a) Position of α∞ for α ∈ (0, θ∗).

α
∞

α

θ
*
=πθ

*

1

0

−1

(b) Position of α∞ for α ∈ (θ∗, θ
∗).

Figure 2. Relation between α and α∞.

Then Θ(t) converges to the unique equilibrium state Φ = (φ1, · · · , φN ) in the region R(α∞),
i.e., there exists a unique phase-locked state Φ := (φ1, . . . , φN ) ∈ R(α∞), such that

ωi +
K

N
S(φi)

N∑
j=1

I(φj) = 0, lim
t→∞

Θ(t) = Φ.

Remark 2.2. The result of Theorem 2.1 implies the emergence of COD as follows. Let ρi
be the rotation number of the i-th oscillator. It follows from Theorem 2.1 that

θi(t) = φi.

Thus, the rotation number ρi is zero:

ρi = lim
t→∞

θi(t)

t
= 0.

In the following two sections, we study the emergent dynamics for gradient and general
systems in relation to (1.1).

3. A gradient flow formulation of the Winfree model

In this section, we present emergent dynamics of the Winfree model in (1.1) on a sym-
metric network with the following special relation between S and I:

(3.11) cji = cij , 1 ≤ i, j ≤ N, S(θ) = I ′(θ), I : analytic.

Note that the well-studied example in (2.8) satisfies (3.11). Together, systems (1.1)-(3.11)
become

(3.12) θ̇i = ωi +K

N∑
j=1

cjiI
′(θi)I(θj), i ∈ N .

Next, we define an analytical potential function V = V (Θ):

V (Θ) := −
N∑
i=1

ωiθi −
K

2

 N∑
i,j=1

cjiI(θi)I(θj)

 .
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It is easy to verify that (3.12) can be rewritten as a gradient system:

θ̇i = −∂θiV (Θ), i.e., Θ̇ = −∇ΘV (Θ).

Next, we study the emergence of COD in a large coupling regime. For a gradient system
with an analytical potential function, uniform boundedness implies convergence toward the
equilibrium state. Thus, we have the emergence of COD.

Proposition 3.1. [19]. Let Θ = Θ(t) be a uniformly bounded solution to (3.12) satisfying

sup
t>0
‖Θ(t)‖∞ <∞.

Then there exists an equilibrium Θ∞ such that

(3.13) lim
t→∞
‖Θ(t)−Θ∞‖∞ = 0.

Remark 3.1. Note that the convergence relation in (3.13) causes the rotation numbers ρi
to approach zero. Thus, Proposition 3.1 implies the emergence of COD.

We set Ω and di to be the natural frequency vector and degree of the i-th node, respec-
tively:

Ω := (ω1, · · · , ωN ), di :=
N∑
j=1

cji.

Lemma 3.1. Suppose that the functions S and I satisfy (2.7) and (3.11), and let Θ = Θ(t)
be the solution to (3.12) satisfying

θi0 ∈ [−θ∗, θ∗], i ∈ N and K >
( ‖Ω‖∞

min
1≤i≤N

di

) 1

|I ′(θ∗)I(θ∗)|
.

Then, we have

θi(t) ∈ [−θ∗, θ∗], i ∈ N for t > 0.

Proof. We will show that the interval I := [−θ∗, θ∗] is a positively invariant set. To this
end, it suffices to show that once the flow hits the boundary points −θ∗ or θ∗ at some finite
time t0, then it will flow into the interval I again so that the flow is confined in the closed
interval I afterwards. Since (3.12) is autonomous, without loss of generality, we assume
t0 = 0.

• Case A: Suppose that there exists i ∈ N such that

θi0 = −θ∗ and θj0 ∈ [−θ∗, θ∗], 1 ≤ j 6= i ≤ N.

In this case, we use the facts that

ωi ≥ −‖Ω‖∞, I ′(θi0) = I ′(−θ∗) = −I ′(θ∗) > 0 and

I(θj0) ≥ I(−θ∗) = I(θ∗) > 0
(3.14)
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to show

dθi
dt

∣∣∣
t=0+

= ωi +KI ′(θi0)
N∑
j=1

cjiI(θj0)

≥ ωi −KI ′(θ∗)
N∑
j=1

cjiI(θ∗) by (3.14)

= ωi +Kdi|I ′(θ∗)I(θ∗)| using I ′(θ∗)I(θ∗) < 0

≥ −‖Ω‖∞ +K
(

min
1≤i≤N

di

)
|I ′(θ∗)I(θ∗)| by (3.14)

> 0.

(3.15)

• Case B: Suppose that there exists i ∈ N such that

θi0 = θ∗ and θj0 ∈ [−θ∗, θ∗], 1 ≤ j 6= i ≤ N.
Then,

(3.16) ωi ≤ ‖Ω‖∞, I ′(θi0) = I ′(θ∗) < 0, I(θj0) ≥ I(θ∗) > 0,

implies

dθi
dt

∣∣∣
t=0+

= ωi +K

N∑
j=1

cjiI
′(θi0)I(θj0)

≤ ωi +K
N∑
j=1

cjiI
′(θ∗)I(θ∗) by (3.16)

= ωi −Kdi|I ′(θ∗)I(θ∗)| using I ′(θ∗)I(θ∗) < 0

≤ ‖Ω‖∞ −K( min
1≤i≤N

di)|I ′(θ∗)I(θ∗)| by (3.16)

< 0.

(3.17)

Finally, we combine the results in (3.15) and (3.17) of Cases A and B to conclude I is a
positively invariant set. �

By combining the uniform boundedness of Θ(t) and Proposition 3.1, we derive the fol-
lowing result.

Theorem 3.1. Suppose that the functions S and I satisfy (5.35) and the structural condi-
tion in (2.7), and let Θ = Θ(t) be the solution to (3.12) satisfying

θi0 ∈ [−θ∗, θ∗], i ∈ N and K >
( ‖Ω‖∞

min
1≤i≤N

di

) 1

|I ′(θ∗)I(θ∗)|
.

Then COD occurs, i.e.,
ρi = 0, i ∈ N .

Proof. By Lemma 3.1, the configuration Θ is uniformly bounded, i.e.,

θi(t) ∈ [−θ∗, θ∗], i ∈ N .
It follows from Proposition 3.1 that there exists an equilibrium Θe such that

lim
t→∞

Θ(t) = Θe.
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This yields

ρi = lim
t→∞

θi(t)

t
= 0.

�

4. A Winfree model on general connected networks

In this section, we study the emergence of COD and POD in the locally coupled Winfree
model (1.1)-(1.2) which may not be a gradient system. As in Section 3, it suffices to show
that the Winfree flow is uniformly bounded to derive COD in the sense of Definition 2.1 in
a large coupling regime.

For α ∈ (0, θ∗), we set α∞ ∈ (0, θ∗) to be a mirror point of α determined by relations
(2.9) and (2.10). Then, for such α∞, we set

J (α∞) := (−α∞, α∞).

In the future, we plan to show that the symmetric closed interval J (α∞) is an attractor for
the Winfree flow in (1.1)-(1.2).

Lemma 4.1. (Positive invariance of J (α∞)) Suppose that conditions (2.6)-(2.7) and 0 <
α < θ∗ hold, and let Θ = Θ(t) be the global smooth solution to (1.1)-(1.2) satisfying

θi0 ∈ J (α∞), i ∈ N and K >
‖Ω‖∞

( min
1≤i≤N

di)|(SI)(α∞)|
.

Then J (α∞) is positively invariant along the Winfree flow (1.1)-(1.2), i.e.,

θi(t) ∈ J (α∞), t ≥ 0.

Proof. We use essentially the same arguments as Lemma 3.1 to show that if the Winfree
flow issued from the interval J (α∞) hits the boundary of J (α∞), it directs toward the in-
terior of J (α∞) so that J (α∞) is a positively invariant region. More precisely, we consider
the following two cases.

• Case A: If there exist t0 ≥ 0 and i ∈ N such that

θi(t0) = −α∞, θj(t0) ∈ J (α∞),

then, by the properties of S,

S(θi(t0)) = S(−α∞) = |S(α∞)|, I(θj(t0)) ≥ I(α∞) > 0.

This yields

dθi
dt

∣∣∣
t=t0
≥ −‖Ω‖∞ +K

N∑
j=1

cjiS(θi(t0))I(θj(t0))

≥ −‖Ω‖∞ +K
N∑
j=1

cji|(SI)(α∞)|

≥ −‖Ω‖∞ +K( min
1≤i≤N

di)|(SI)(α∞)|

> 0.

(4.18)
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Thus, once θi hits the left boundary of J (α∞) in finite time, it will flow into the interval
J (α∞), i.e., it cannot leave the interval through the left end point of the interval.

• Case B: If there exist t0 ≥ 0 and i ∈ N such that

θi(t0) = α∞, θj(t0) ∈ J (α∞),

then the properties of S imply

S(θi(t0)) = S(α∞) = −|S(α∞)|, I(θj(t0)) ≥ I(α∞) > 0.

This yields

dθi
dt

∣∣∣
t=t0
≤ ‖Ω‖∞ +K

N∑
j=1

cjiS(θi(t0))I(θj(t0))

≤ ‖Ω‖∞ −K
N∑
j=1

cji|(SI)(α∞)|

≤ ‖Ω‖∞ −K( min
1≤i≤N

di)|(SI)(α∞)|

< 0.

(4.19)

Thus, once θi hits the right boundary of J (α∞) in finite time, it flows into the interval
J (α∞) again, i.e., it cannot leave the interval through the right end point of the interval.
Finally, we combine the estimates in (4.18) and (4.19) to obtain the desired result. �

Remark 4.1. In (4.18) and (4.19), we only used the non-negativity of cji and positive
degree di > 0. We also did not use the symmetric assumption cji = cij.

Lemma 4.2. Suppose that conditions (2.6) and (2.7) hold, and let Θ = Θ(t) be the global
smooth solution to (1.1)-(1.2) satisfying

α ∈ (0, θ∗), θi0 ∈ J (α), i ∈ {1, · · · , n}, and K ≥ max
1≤i≤n

|ωi|∑n
j=1 cji

1

|(SI)(α∞)|
,

for some n ≤ N . Then, we have

|θi(t)| ≤ α, t ≥ 0, i ∈ {1, · · · , n}.

Proof. Similar to the proof of Lemma 4.1, we show that the flow of {θi}ni=1 cannot leave

the closed cube (J (α))n in a finite time. Since the flow is autonomous, it suffices to show
that once the flow initially hits the boundary of the cube (J (α))n, it cannot leave the cube
afterwards.

Suppose that |θi0| = α. Then, we use

sgn(θi0)S(θi0) = S(|θi0|) = S(α) < 0 and I(θi) ≥ I(α), for i ∈ {1, · · · , n}



12 HA, KO, PARK, AND RYOO

to obtain

d|θi|
dt

∣∣∣
t=0+

≤ |ωi|+K
N∑
j=1

cjiS(|θi0|)I(θj0)

≤ |ωi|+K
n∑
j=1

cjiS(α)I(α)

= |ωi| −K
n∑
j=1

cji|(SI)(α∞)|

≤ 0,

(4.20)

where the following property of SI is used:

max
0≤θ≤θ∗

(SI)(θ) ≤ 0, (SI)(α∞) = (SI)(α).

�

Remark 4.2. In Lemma 4.2, we present a positive invariance for some part of oscillators
{1, · · · , n} ⊂ N , whereas Lemma 4.1 gives a positively invariant set for the whole oscillators
N . Note that

|ωi|
di
≤ ‖Ω‖∞

min1≤i≤N di
.

Thus, the result of Lemma 4.2 implies that if K ≥ ‖Ω‖∞
min1≤i≤N di

1

|(SI)(α∞)|
, then

|θi0| ≤ α =⇒ |θi(t)| ≤ α for i ∈ N .

The direct application of Lemma 4.2 yields a sufficient condition for the zero rotation
number.

Theorem 4.1. (Emergence of POD and COD) Suppose that conditions (2.6) and (2.7)
hold, and let Θ = Θ(t) be the global smooth solution to (1.1)-(1.2) satisfying

α ∈ (0, θ∗), θi0 ∈ J (α), i ∈ {1, · · · , n} and K ≥ max
1≤i≤n

|ωi|∑n
j=1 cji

1

|(SI)(α∞)|
,

for some n ≤ N . Then, we have

ρi = 0, i ∈ {1, · · · , n}.

Proof. It follows from Lemma 4.2 that

sup
t≥0
|θi(t)| ≤ α.

The definition of ρi implies

|ρi| ≤ lim sup
t→∞

|θi(t)|
t

= 0, ρi = 0.

�

Remark 4.3. If we take n = N and K ≥ ‖Ω‖∞
min1≤i≤N di

1

|(SI)(α∞)|
, then the result of

Theorem 4.1 yields the emergence of COD.
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5. Qualitative properties of Winfree oscillators

In this section, we study the following qualitative properties: existence of an attractor,
equilibrium, and exponential `1-stability.

5.1. Existence of an attractor. In this subsection, we show that the set J (α∞) absorbs
the neighboring flow, i.e., J (α∞) satisfies an attractivity property. Note that Lemma 4.1
implies that the interval J (α∞) is a bounded and positively invariant set. Thus, we need
to show that J (α∞) does attract neighboring configurations in finite time.

Proposition 5.1. Suppose that conditions (2.6) and (2.7) hold, and let Θ = Θ(t) be the
global smooth solution to (1.1)-(1.2) satisfying

α ∈ (0, θ∗), θi0 ∈ J (α), i ∈ N and K >
‖Ω‖∞
min

1≤i≤N
di

1

|(SI)(α∞)|
.

Then there exists a te ∈ [0,∞) such that

θi(t) ∈ J (α∞), t ≥ te.
More precisely, for α > α∞, te can be chosen as follows:

te := − α− α
∞

∆(Ω, D)
> 0, ∆(Ω, D) := ‖Ω‖∞ −K( min

1≤i≤N
di)|(SI)(α∞)|.

Proof. Suppose that the initial data satisfy

α ∈ (0, θ∗), θi0 ∈ J (α) for all i ∈ N .
Without loss of generality, we assume α > α∞. Next, we show that the N -dimensional cube
(J (α))N shrinks into the smaller positively invariant set J (α∞)N in finite time along the
Winfree flow (1.1)-(1.2).

If Θ0 ∈ (J (α∞))N , then taking te = 0 yields the desired result. Thus, it suffices to show
that

(5.21) Θ0 ∈ (J (α))N ∩
(

(J (α∞))N
)c
,

i.e.,

(5.22) ∃ i ∈ N such that α∞ ≤ |θi0| < α and |θk0| < α, k 6= i.

Next, we show that the initial configuration satisfying (5.21) enters the set J (α∞) in finite
time. For this, we define a set T and its supremum:

T :=
{
T ∈ (0,∞] : |θi(t)| < α+ t∆(Ω, D), t ∈ [0, T ), 1 ≤ i ≤ N

}
,

and T ∗ := sup T .
• Step A (T is nonempty): Consider the following two cases.

� Case A.1: Let M := argmax1≤i≤N |θi|, then M satisfies (5.22), we use

S(|θM0|) < 0, I(|θj0|) > (|θM0|) > I(α) > 0, (SI)(α) = (SI)(α∞), (SI)(|θM0|) ≤ (SI)(α)

to obtain

d|θM |
dt

∣∣∣
t=0+

≤ |ωM |+K

N∑
j=1

cjMS(|θM0|)I(|θj0|)
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≤ |ωM |+K
N∑
j=1

cjMS(|θM0|)I(|θj0|)

≤ |ωM |+K

N∑
j=1

cjMS(α)I(α)

= |ωM | −K
N∑
j=1

cjM |(SI)(α)|

< |ωM | −KdM |(SI)(α∞)|
≤ ∆(Ω, D) < 0.

Thus, there exists δi > 0 such that

|θi(t)| ≤ |θM0|+ t∆(Ω, D) < α+ t∆(Ω, D), t ∈ [0, δi).

� Case A.2: If j satisfies |θj0| < α∞, we consider the continuous function

h(t) := α+ t∆(Ω, D)− |θj(t)|.
Note that since α∞ < α, we have

h(0) = α− |θj0| ≥ α− α∞ = 0.

Then, by the continuity of h, there exists δj > 0 such that

h(t) > 0, i.e., |θj(t)| < α+ t∆(Ω, D), t ∈ [0, δj).

Therefore, by choosing δ := min
1≤i≤N

δi > 0, we have

max
1≤i≤N

|θi(t)| < α+ t∆(Ω, D), t ∈ [0, δ), i.e., δ ∈ T .

Hence, the set T is nonempty. Thus, T ∗ = sup T > 0. Moreover, T ∗ ∈ T :

(5.23) |θi(t)| < α+ t∆(Ω, D), t ∈ [0, T ∗).

• Step B (T ∗ <∞): Suppose T ∗ =∞. Then,

|θi(t)| < α+ t∆(Ω, D), t ∈ [0,∞), i = 1, · · · , N.
Letting t → ∞, we see that the left-hand side is bounded below by zero, whereas the
right-hand side becomes −∞, which is a contradiction. Hence,

(5.24) T ∗ <∞ and |θi(t)| < α+ t∆(Ω, D) i = 1, · · · , N, t ∈ [0, T ∗).

• Step C (Θ enters (J (α∞))N before T ∗). More precisely, we claim:

(5.25) α+ T ∗∆(Ω, D) ≤ α∞.
If (5.25) is true, then

max
1≤i≤N

|θi(T ∗)| ≤ α+ T ∗∆(Ω, D) ≤ α∞,

i.e., the flow Θi(T
∗) lies in the interval (J (α∞))N .

Proof of claim (5.25): Suppose to the contrary that (5.25) is not true, i.e.,

α+ T ∗∆(Ω, D) > α∞.

Letting t→ T ∗− in (5.24), we have

|θi(T ∗)| ≤ α+ T ∗∆(Ω, D), 1 ≤ i ≤ N.
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� Step C.1: For all i ∈ N , assume that

(5.26) |θi(T ∗)| < α+ T ∗∆(Ω, D).

By the continuity of Θ, there exists δ′ > 0 such that

|θi(t)| < α+ t∆(Ω, D), i = 1, · · · , N, t ∈ (0, T ∗ + δ′),

i.e., T ∗ + δ′ ∈ T , which contracts the fact that T ∗ = sup T <∞.

� Step C.2: From the result of Step C.1, (5.26) does not hold. Thus, there exists M
such that

(5.27) |θM (T ∗)| = α+ T ∗∆(Ω, D) ∈ (α∞, α), |θi(T ∗)| ≤ |θM (T ∗)|, ∀i.

Then relation (5.27) yields

(5.28) |(SI)(θM (T ∗))| ≥ |(SI)(α∞)|.

We now use (5.28) to obtain

d|θM |
dt

∣∣∣
t=T ∗

≤ |ωM |+K

N∑
j=1

cjMS(|θM (T ∗)|)I(|θj(T ∗)|)

≤ |ωM |+K
N∑
j=1

cjMS(|θM (T ∗)|)I(|θM (T ∗)|)

= |ωM | −K
N∑
j=1

cjM |S(|θM (T ∗)|)I(|θM (T ∗)|)|

< |ωM | −KdM |(SI)(α∞)|
≤ ∆(Ω, D).

From the continuity of θ̇M , there also exists t∗ < T ∗ such that

(5.29)
d|θM |
dt

≤ ∆(Ω, D) for t ∈ (t∗, T ∗).

Integrating (5.29) from t∗ to T ∗ yields

|θM (t∗)| ≥ |θM (T ∗)|+ ∆(Ω, D)(t∗ − T ∗) = α+ t∗∆(Ω, D).

However, this contradicts (5.23); hence,

max
1≤i≤N

|θi(T ∗)| ≤ α+ T ∗∆(Ω, D) ≤ α∞.

Finally, te is chosen so that the following is satisfied:

α+ te∆(Ω, D) = α∞, i.e., te := − α− α
∞

∆(Ω, D)
.

�
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5.2. `1-contractivity of the Winfree flow. In this subsection, we study the `1-contraction
property of the Winfree flow. For all-to-all networks, similar results can be found in [21].

Proposition 5.2. Suppose conditions (2.6)-(2.7) hold, and let Θ = Θ(t) and Θ̃ = Θ̃(t) be

two global smooth solutions to (1.1)-(1.2) with initial data Θ0 and Θ̃0 satisfying

α ∈ (0, θ∗), Θ0, Θ̃0 ∈ (J (α))N , and K >
‖Ω‖∞
min

1≤i≤N
di

1

|(SI)(α∞)|
.

Then there exists a te ∈ [0,∞) and negative constants λl and λu such that

eKλl(t−te)‖Θ(te)− Θ̃(te)‖1 ≤ ‖Θ(t)− Θ̃(t)‖1
≤ eKλu(t−te)‖Θ(te)− Θ̃(te)‖1, t ≥ te,

(5.30)

where te is given in Proposition 5.1, and the negative constants λl and λu are defined by

λl := ( max
1≤i≤N

di)((S
′I)(0)− (SI ′)(α∞)) < 0,

λu := ( min
1≤i≤N

di)(SI)′(α∞) < 0.
(5.31)

Proof. Note that if Θ(t) = Θ̃(t), then the desired inequalities hold. Thus, without loss of
generality, we assume that

Θ(t) 6= Θ̃(t), t ≥ te.

• Case A (Second inequality in (5.30)): The second inequality can be rewritten as follows:

(5.32) ‖Θ(t)− Θ̃(t)‖1e−Kλut ≤ ‖Θ(te)− Θ̃(te)‖1e−Kλute , t ≥ te.

Set

Lu(t) := ‖Θ(t)− Θ̃(t)‖1e−Kλut.

We claim that

(5.33) Lu is non-increasing on [te,∞).

Proof of claim (5.33): Since Lu is continuous, it suffices to show that for any t0 ∈ (te,∞),
there exists a δ > 0 such that L(t0) ≥ L(t) for all t ∈ (t0, t0 + δ).

Let (s1, . . . , sN ) ∈ {−1, 1}N be an N -tuple of signatures. Note that

N∑
i=1

si(θi − θ̃i)(t0) = ‖Θ(t0)− Θ̃(t0)‖1

⇐⇒ si(θi − θ̃i)(t0) ≥ 0

⇐⇒ si =

{
1 or − 1, if (θi − θ̃i)(t0) = 0,

sgn(θi − θ̃i)(t0), if (θi − θ̃i)(t0) 6= 0.

(5.34)
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We use the mean-value theorem for two-variable functions to obtain

d

dt

(
N∑
i=1

si(θi − θ̃i) · e−Kλut
)∣∣∣∣∣

t0

· eKλut0

= K
∑

1≤i,j≤N
sicji

(
S(θi)I(θj)− S(θ̃i)I(θ̃j)

)
−Kλu

N∑
i=1

si(θi − θ̃i)

= K
∑

1≤i,j≤N
sicji

(
S′(θ∗i )I(θ∗j )(θi − θ̃i) + S(θ∗i )I

′(θ∗j )(θj − θ̃j)
)

−Kλu
N∑
i=1

si(θi − θ̃i)

= K

N∑
i=1

{[ N∑
j=1

cji

(
S′(θ∗i )I(θ∗j ) + S(θ∗j )I

′(θ∗i )sisj

)]
− λu

}
︸ ︷︷ ︸

=:I1

si(θi − θ̃i)
∣∣∣
t=t0

.

(5.35)

Here, θ∗i , θ
∗
j ∈ (−α∞, α∞). The symmetry of cij and 1

si
= si is used to show that∑

i,j

sicjiS(θ∗i )I
′(θ∗j )(θj − θ̃j) =

∑
i,j

sjcijS(θ∗j )I
′(θ∗i )(θi − θ̃i)

=
∑
i,j

sjsicjiS(θ∗j )I
′(θ∗i )si(θi − θ̃i).

Note that the terms inside the summation of I1 can be estimated as follows.

• (Estimate of S′(θ∗i )I(θ∗j )): In this case, we use the monotonicity of S′ and I:

(5.36) S′(0) ≤ S′(θ∗i ) ≤ S′(α∞) < 0, I(0) ≥ I(θ∗j ) ≥ I(α∞) > 0,

to obtain

(5.37) S′(θ∗i )I(θ∗j ) ≤ S′(α∞)I(α∞) < 0.

• (Estimate of S(θ∗j )I
′(θ∗i )): Again, we use the monotonicity of S and I ′:

S(α∞) ≤ −|S(θ∗j )| ≤ S(0) ≤ 0, I ′(α∞) ≤ −|I ′(θ∗i )| ≤ I ′(0) ≤ 0,

to obtain

(5.38) 0 < |S(θ∗j )I
′(θ∗i )| ≤ S(α∞)I ′(α∞).

For the sign of I, (5.35), (5.37), and (5.38) are used to obtain

I1 =
[ N∑
j=1

cji

(
S′(θ∗i )I(θ∗j ) + S(θ∗j )I

′(θ∗i )sisj

)]
− ( min

1≤i≤N
di)(SI)′(α∞)

≤
N∑
j=1

cji

[
(S′I)(α∞) + (SI ′)(α∞))

]
− ( min

1≤i≤N
di)(SI)′(α∞)

= (di − min
1≤i≤N

di)(SI)′(α∞) ≤ 0.

(5.39)
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Next, si is chosen to satisfy

N∑
i=1

si(θi − θ̃i)(t0) = ‖Θ(t0)− Θ̃(t0)‖1

as in (5.34). Then, in (5.35), we use (5.39) to obtain

dLu
dt

∣∣∣
t=t0

= Ke−Kλut0 ×
N∑
i=1

I1(t0)|θi(t0)− θ̃i(t0)| ≤ 0.

This proves (5.32).

• Case B (First inequality in (5.30)): Note that the first inequality can be rewritten as

(5.40) ‖Θ(te)− Θ̃(te)‖1e−Kλlte ≤ ‖Θ(t)− Θ̃(t)‖1e−Kλlt, t ≥ te.
Set

Ll(t) := ‖Θ(t)− Θ̃(t)‖1e−Kλlt.
To prove (5.40), it suffices to show that the functional Ll is non-decreasing in the time-
interval [te,∞). As in (5.35), we use (5.31) to obtain

d

dt

(
N∑
i=1

si(θi − θ̃i) · e−Kλlt
)∣∣∣∣∣

t=t0

· eKλlt0

= K
∑

1≤i,j≤N
sicji

(
S′(θ∗i )I(θ∗j )(θi − θ̃i) + S(θ∗i )I

′(θ∗j )(θj − θ̃j)
)

−Kλl
N∑
i=1

si(θi − θ̃i)

= K

N∑
i=1

 N∑
j=1

cjiS
′(θ∗i )I(θ∗j )

− ( max
1≤i≤N

di)S
′(0)I(0)


︸ ︷︷ ︸

=:I2

si(θi − θ̃i)
∣∣∣
t=t0

+K

N∑
i=1

 N∑
j=1

cjiS(θ∗j )I
′(θ∗i )sisj

+ ( max
1≤i≤N

di)S(α∞)I ′(α∞)


︸ ︷︷ ︸

=:I3

si(θi − θ̃i)
∣∣∣
t=t0

,

(5.41)

for some θ∗i , θ
∗
j ∈ J (α∞). Next, we estimate the signs of Ii, i = 2, 3.

• (Estimate of I2): It follows from (5.36) that

0 > S′(θ∗i )I(θ∗j ) ≥ S′(0)I(0).

This relation is used to obtain

I2 =

 N∑
j=1

cjiS
′(θ∗i )I(θ∗j )

− ( max
1≤i≤N

di)S
′(0)I(0)

≥
(
di − ( max

1≤i≤N
di)
)
S′(0)I(0) ≥ 0.

(5.42)
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• (Estimate of I3): It follows from (5.38) that

cjiS(θ∗j )I
′(θ∗i )sisj ≥ −cjiS(α∞)I ′(α∞).

This yields

I3 =
( N∑
j=1

cjiS(θ∗j )I
′(θ∗i )sisj

)
+ ( max

1≤i≤N
di)S(α∞)I ′(α∞)

≥
(

( max
1≤i≤N

di)− di
)
S(α∞)I ′(α∞) ≥ 0.

(5.43)

It follows from (5.41), (5.42), and (5.43) that

d

dt

(
N∑
i=1

si(θi − θ̃i) · e−Kλlt
)∣∣∣∣∣

t=t0

= Ke−Kλlt0 ×
N∑
i=1

(I2 + I3)si(θi − θ̃i)
∣∣∣
t=t0
≥ 0.

Then, by the same logic employed in Case A, we have

dLl
dt

∣∣∣
t=t0

= Ke−Kλlt0 ×
N∑
i=1

(I2(t0) + I3(t0))|θi(t0)− θ̃i(t0)| ≥ 0.

Hence, the first inequality holds. �

5.3. Emergence of an equilibrium. In this subsection, we present the unique existence
of an equilibrium for (1.1)-(1.2) in the region (J (α∞))N .

Theorem 5.1. (Emergence of COD) Suppose conditions (2.6) and (2.7) hold, and let
Θ = Θ(t) be a global smooth solution to (1.1)-(1.2) satisfying

(5.44) α ∈ (0, θ∗), Θ0 ∈ J (α)N , and K >
‖Ω‖∞
min

1≤i≤N
di

1

|(SI)(α∞)|
.

Then Θ(t) converges to an equilibrium in the region J (α)N that is uniquely determined
by only Ω, K, and (cij), but not by Θ0; i.e., there exists a unique complete death state
φ := (φ1, . . . , φN ) ∈ J (α)N such that

ωi +K
N∑
j=1

cjiS(φi)I(φj) = 0, lim
t→∞

θi(t) = φi.

Moreover, the convergence of Θ(t) to Φ is exponential with a decay rate in [Kλl,Kλu].

Proof. • Part A (Existence): Suppose (5.44) holds, and let Θ = Θ(t) be a global solution
to (1.1)-(1.2). For T > 0, we fix the shifted function ΘT as follows:

ΘT (t) := Θ(t+ T ), t ≥ 0.

Since system (1.1) is autonomous, it is easy to verify that ΘT is a solution with initial data
Θ(T ). By Proposition 5.1, there exists a finite time te ∈ [0,∞) such that

Θ(t),ΘT (t) ∈ J (α)N , t ≥ te.

Applying Proposition 5.2 again, we see that

(5.45) ‖Θ(t)−ΘT (t)‖1 ≤ eKλu(t−te)‖Θ(te)−Θ(T + te)‖1, t ≥ te.
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In particular, if T = 1 and t = n ≥ te,

‖Θ(n)−Θ(n+ 1)‖1 ≤ eKλu(n−te)‖Θ(te)−Θ(1 + te)‖1.

This implies that the sequence {Θ(n)} is Cauchy in (Rd, ‖ · ‖1); thus, it converges to some
Φ ∈ J (α)N , i.e.,

lim
n→∞

Θ(n) = Φ.

Considering all T ∈ [0, 1), we see that Θ(t) itself converges to Φ = (φ1, · · · , φN ):

(5.46) lim
t→∞

Θ(t) = Φ.

On the other hand, it follows from Proposition 5.1 that Φ belongs to the closure of R(α∞),
and (5.46) implies

ωi +K
N∑
j=1

cjiS(φi)I(φj) = lim
t→∞

ωi +K
N∑
j=1

cjiS(θi(t))I(θj(t))


= lim

t→∞
θ̇i(t).

(5.47)

It follows from (5.45) with h instead of T that∥∥Θ(t+ h)−Θ(t)

h

∥∥∥
1
≤ eKλu(t−te)

∥∥∥Θ(te + h)−Θ(te)

h

∥∥∥
1
, t ≥ te.

Letting h→ 0 yields

‖Θ̇(t)‖l ≤ eKλu(t−te)‖Θ̇(te)‖1, t ≥ te.
Again, we let t→∞ to obtain

(5.48) lim
t→∞
‖Θ̇(t)‖1 = ‖ lim

t→∞
Θ̇(t)‖1 = 0, i.e., lim

t→∞
Θ̇(t) = 0.

Finally, we combine (5.47) and (5.48) to show that the asymptotic limit Φ is, in fact, an
equilibrium for (1.1)-(1.2):

ωi +K

N∑
j=1

cjiS(φi)I(φj) = 0.

Thus, the asymptotic state emerging from the initial configuration in a large coupling regime
is necessarily an equilibrium, i.e., the COD state. The boundary of J (α)N doesn’t have
any equilibrium points, so that Φ is in J (α)N . Next, we show that the equilibrium in the
region R(α) is unique.

• Part B (Uniqueness): Let Φ and Φ̃ be two equilibria states inside J (α)N , and let Φ(t)

and Φ̃ be two solutions with initial data Φ and Φ̃, respectively. Then,

Φ(t) = Φ, Φ̃(t) = Φ̃, t ≥ 0.

Applying Proposition 5.2 to Φ and Φ̃ yields

(5.49) ‖Φ− Φ̃‖1 ≤ eKλu(t−te)‖Φ(te)− Φ̃(te)‖1, t ≥ te.

If Φ 6= Φ̃, then let t→∞ in (5.49) to find

‖Φ− Φ̃‖1 ≤ 0, Φ = Φ̃,

which is a contradiction. Hence, Φ = Φ̃. �
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6. Numerical simulations

In this section, we provide numerical simulations on the Winfree model with three sym-
metric networks (all-to-all, nearest neighbor, and star-shaped couplings). Numerical simu-
lations on the all-to-all Winfree model are considered in [2, 34] for the phase diagram of each
states. Our interest is to compare the numerical simulations with the analytic results which
are given in previous sections. Throughout this section, we used the fourth order Runge-
Kutta method with time step ∆t = 0.01 and N = 20 for all numerical implementations.
The sensitivity and influence functions were chosen as follows:

S(θ) = − sin θ and I(θ) = 1 + cos θ.

6.1. Comparison of network structures. In this subsection, we present numerical ex-
amples for symmetric network structures. We employ three kinds of interacting structures:
an all-to-all network, nearest neighbor network, star-shaped network.

• All-to-all network: An all-to-all network is one in which all agents communicate mutually.
Thus, the capacity matrix CA for an all-to-all network is expressed by

CA = (cji), cji =
1

N
for all i, j ∈ N .

This yields that the degree of the network is given by di =
∑N

j=1 cji = 1 for all i = 1, · · · , N .

• Nearest neighbor network: In a nearest neighbor network, each agent communicates with
nearby agents, i.e., the ith agent interacts with both the i − 1st and i + 1st agents for
2 ≤ i ≤ N − 1, and the first and last agents communicate with each other. In this case, the
capacity matrix CR is given by

CN =



1 1 0 · · · 0 1
1 1 1 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 1
1 0 0 · · · 1 1


.

In this network, the degree of network is determined by di =
∑N

j=1 cji = 3 for all i =
1, · · · , N .
• Star-shaped network: In a star-shaped network, there exists a unique central agent; all
other agents interact with only the central agent. Let the first agent play the role of the
central agent. Then the capacity matrix CS is given by

CS =



1 1 1 · · · 1 1
1 1 0 · · · 0 0
1 0 1 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 0
1 0 0 · · · 0 1


.

Note that when N ≥ 3, the degree of the network d1 =
∑N

j=1 cj1 = N for the central agent

is not equal to 2, whereas di =
∑N

j=1 cij = 2 for i 6= 1.
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(a) Initial phase configuration Θ0.
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Θ(t): all-to-all couplings.
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Θ(t): nearest neighbor couplings.
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(d) lim
t→∞

Θ(t): star-shaped couplings.

Figure 3. Comparison of network structures.

We set α = 2π
3 and randomly choose N = 20 oscillators so that the initial configuration

satisfies

Θ0 = (θ10, · · · , θN0) ∈ (J (α))N .

Since (SI)(α) = (SI)(α∞) ≈ −0.4330, it follows that α∞ ≈ 0.2210. Randomly choosing
the natural frequency ωi in (1

2 ,
3
2) for all i ∈ N yields ‖Ω‖∞ = 3

2 . The coupling strength
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(a) Trajectory of oscillators with all-to-all networks.
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(b) Trajectory of oscillators with nearest neighbor net-
works.
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(c) Trajectory of oscillators with star-shaped net-
works.

Figure 4. Comparison of trajectories.

K = 4 is chosen to satisfy

K >
‖Ω‖∞
min

1≤i≤N
di

1

|(SI)(α∞)|
≈ 3.4641.

Figure 3 shows the initial configuration of the oscillators and the terminal configurations
for each network structure. The trajectories of the solution for each network structure are
shown in Figure 4.

6.2. `1-stability. In this subsection, we demonstrate the `1-contraction of the Winfree flow,
which was discussed in Proposition 5.2. We use the previously determined settings and set
α = 2π

3 and K = 4. Furthermore, the natural frequency ωi is randomly chosen in the

interval (1
2 ,

3
2) for all i ∈ N . We choose two distinct initial position Θ0 and Θ̃0 in (J (α))N

as shown in Figures 5(a) and 5(b). In Figure 6, we present the `1-contraction ‖Θ − Θ̃‖1
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and log-plot log ‖Θ − Θ̃‖1 for various network structures. Let ΘA,ΘN , and ΘS denote
the solutions for all-to-all, nearest neighbor, and star-shaped communications, respectively.
The slopes in Figure 6(d) are given by

2(log ‖ΘA(1.5)− Θ̃A(1.5)‖1 − log ‖ΘA(1)− Θ̃A(1)‖1) ≈ −7.9467

2(log ‖ΘN (1.5)− Θ̃N (1.5)‖1 − log ‖ΘN (1)− Θ̃N (1)‖1) ≈ −24.4947

2(log ‖ΘS(1.5)− Θ̃S(1.5)‖1 − log ‖ΘS(1)− Θ̃S(1)‖1) ≈ −16.1686.

In Proposition 5.2, the decay rate of the log `1-contraction is between Kλl and Kλu. For
all-to-all interacting network CA, the constants λl λu are give by

λl = ( max
1≤i≤N

di)((S
′I)(0)− (SI ′)(α∞)) ≈ −2.0480

λu = ( min
1≤i≤N

di)(SI)′(α∞) ≈ −1.8796,

where max
1≤i≤N

di = min
1≤i≤N

di = 1. Since K = 4, the decay rate for the all-to-all network

satisfies

−8.1921 ≈ Kλl ≤ −7.9467 ≤ Kλu ≈ −7.5185.

For the nearest neighbor network CN , the maximum and minimum of degrees max
1≤i≤N

di =

min
1≤i≤N

di = 3 for all i = 1, · · · , N . This implies

λl ≈ −6.1441, λu ≈ −5.6388.

so that

−24.5764 ≈ Kλl ≤ −24.4947 ≤ Kλu ≈ −22.5554.

On the other hand, for the star-shaped network CS , d1 = 20 and di = 2 for all i = 2, · · · , N ,
which yield

λl ≈ −40.9607, λu ≈ −3.7592.

Hence, the decay rate is attained by

−163.8428 ≈ Kλl ≤ −16.1686 ≤ Kλu ≈ −15.0369.

Therefore, for the three symmetric network structures, the numerical results agree with
Proposition 5.2.

6.3. Emergence of PPLS. In this subsection, we show the emergence of PPLS by varying
the coupling strength K. Initial configurations were chosen in (−π, π). We arranged the
natural frequencies in increasing order in (0.8, 1.2). In Figure 7(a), the frequencies are
equidistant. We plot the rotation numbers ρi for each oscillator i ∈ N by increasing the
coupling strength K ∈ (0.6, 0.8). In Figure 7, observe that there is no PPLS for the small
coupling strength K = 0.6. PPLS emerges for the larger coupling strength K = 0.7.
However, if the coupling strength increases from K = 0.7 to K = 0.79, the number of
agents showing PPLS decreases. Finally for K = 0.795, the oscillators exhibit COD as
shown in Figures 7 and 8. There also appear some monotonicity of the rotation numbers
with respect to the natural frequencies, which can be explained as a following remark.

Remark 6.1. (Ordering principle of rotation numbers)
Suppose that the connection topology is all-to-all and K ≥ 0. Let Θ be a solution to (1.1)
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(d) Trajectory of Θ̃

Figure 5. Initial configurations and trajectories of Θ and Θ̃ for all-to-all
communication networks.

with initial data Θ0. Then, the rotation numbers are ordered according to the sizes of natural
frequencies in the sense that

ωi ≤ ωj implies ρi ≤ ρj , for any i, j.

Proof. Assume that ωi ≤ ωj , and rotation numbers ρi and ρj exist. Then, we can choose
an integer m such that

θj0 ≥ θi0 + 2mπ.
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Figure 6. `1-contraction.

Suppose there is a time t∗ ≥ 0 satisfying θj(t∗) = θi(t∗) + 2mπ. From the equation (1.1),
we have

d

dt
(θj − θi)(t∗) = ωj − ωi ≥ 0.

This yields
θj(t) ≥ θi(t) + 2mπ for all t ≥ 0.

Hence, we can get the following result.

ρj = lim
t→∞

θj
t
≥ lim

t→∞

θi + 2mπ

t
= ρi.

�

We plot a schematic diagram of the rotation numbers of oscillators for varying coupling
constant K in Figure 9. The same initial conditions are given for each simulations. As
increasing of the coupling strength K, the rotation numbers for a part of oscillators coincide,
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(b) Rotation number when K = 0.6.
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(c) Rotation number when K = 0.7
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(d) Rotation number when K = 0.75

Figure 7. Rotation numbers with varying coupling strength K.

which signify the PPLS. If we keep raising the coupling strength, the rotation numbers show
scattering, and finally, the phase states become COD with large coupling strength.

7. Conclusion

In this paper, we studied the emergent dynamics of Winfree oscillators on symmetric
networks. For the emergence of complete or partial oscillator deaths (COD, POD), we
provided sufficient frameworks in terms of connection topology, coupling strength, and
coupling functions. Moreover, our results for COD and POD covered generic initial data in
the case of special sensitivity and influence functions S(θ) = − sin θ and I(θ) = 1 + cos θ,
in large coupling regimes. We also provided three qualitative estimates; in particular, we
considered the existence of an attractor with positive measures, exponential `1-contractivity,
and the existence of an equilibrium inside the attractor of a large-coupling regime. The
results in this paper generalized an earlier result for all-to-all couplings [21] .
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(a) Rotation number when K = 0.78.
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(b) Rotation number when K = 0.785.
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(c) Rotation number when K = 0.79.
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(d) Rotation number when K = 0.795.

Figure 8. Rotation numbers with varying coupling strength K.
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