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Abstract. We study the practical synchronization of the Kuramoto dynamics of units
distributed over networks. The unit dynamics on the nodes of the network are governed
by the interplay between their own intrinsic dynamics and Kuramoto coupling dynamics.
We present two sufficient conditions for practical synchronization under homogeneous and
heterogeneous forcing. For practical synchronization estimates, we employ the configura-
tion diameter as a Lyapunov functional, and derive a Gronwall-type differential inequality
for this value.

1. Introduction

Collective synchronized behavior in coupled oscillators often appears in many complex
biological systems, such as groups of fireflies, neurons, and cardiac pacemaker cells [1, 5,
31, 32]. The synchronization phenomenon arising from a pair of pendulum clocks hanging
on the same bar was first reported in the literature by Huygens in 1665. However, its
mathematical treatment was first investigated by two pioneers, Winfree [31] and Kuramoto
[19], about forty years ago. Since then, Kuramoto’s first-order model and its extension have
been extensively studied in various disciplines [1, 8, 13, 23, 24, 27]. The Kuramoto model
has simple intrinsic dynamics governed by the natural frequency, so that the uncoupled
Kuramoto oscillator’s phase has linear dynamics on the unit circle. A natural questions is

“If the intrinsic dynamics are heterogeneous and rather complicated, can we
still expect some kind of synchrony among oscillators?”

Such situations can be easily found in several examples, e.g., the daily cycling of light and
darkness affecting human sleep rhythms [30]. External fields can also model the external
current applied to a neuron, so as to describe the collective properties of excitable systems
with planar symmetry. For other physical devices, such as Josephson junctions, a periodic
external force can model an oscillating current across the junctions.

The main purpose of this paper is to study the dynamics of Kuramoto units with hetero-
geneous intrinsic dynamics located on a symmetric and connected network G = (V,E,Ψ)
where V = {u1, · · · , uN} and E ⊂ V ×V are vertex and edge sets, respectively and Ψ = (ψij)
is an N × N matrix whose element ψij the capacities of the edge connecting from uj to
ui. For a given network or graph G, we assume that Kuramoto oscillators are located at
the nodes of the network V , and that they interact symmetrically through the interacting
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channels registered by the connection topology E and Ψ. Let ζi = ζi(t) be a quantifiable
description of the state of unit at node i. In the absence of coupling, we assume that ζi ∈ R
is governed by its own dynamics:

(1.1) ζ̇i = Fi(ζi, t),

where we assume that the forcing function Fi : R × R+ → R is a C1-function. We now
consider the case where the above decoupled dynamics (1.1) interact with each other through
the connecting edges of the network. In this case, we assume that the dynamics of ζi are
governed by the following coupled non-autonomous system:

(1.2)

 ζ̇i = Fi(ζi, t) +K
N∑
j=1

ψij sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0,

where K is a positive coupling strength. The static interaction matrix Ψ = (ψij) is assumed
to be symmetric and connected in the sense that

(i) ψij = ψji ≥ 0, 1 ≤ i, j ≤ N,
(ii) For any (i, j) ∈ V × V , there is a shortest path from i to j, say

i = k0 → k1 → · · · → kdij = j, (kl, kl+1) ∈ E, l = 0, 1, . . . , dij − 1.

(1.3)

Here, dij denotes the distance between nodes i and j, i.e., the length of the shortest path
from node i to node j. Note that for all-to-all coupling with ψij = 1

N and Fi = Ωi, system
(1.2) reduces to the Kuramoto model:

ζ̇i = Ωi +
K

N

N∑
j=1

sin(ζj − ζi).

Thus, we can view system (1.2) as a generalized Kuramoto model. Kuramoto-type models
with external forcing terms has been addressed in the literature, e.g., [2, 26, 28], and can be
used to model the sleep–wake cycle. The sleep–wake cycle and circadian rhythms are phase-
locked to each other in the 24-hour period of outside world. Many biological experiments
have shown that, in isolation from a 24-hour periodic environment such as the light–dark
cycle, the various circadian rhythms, e.g., feeding, body temperature, and neuroendocrine
variables, as well as the pattern of sleep and wakefulness, were maintained. However, a
certain internal desynchronization phenomenon occurs, i.e., separate rhythmic variables
oscillating with different periods. Many mathematical models have been deveploped to
explain these phenomena, notably the Kuramoto model with an external periodic force
Fi(ζi, t) = F sin(σt − ζi). In particular, Sakaguchi [28] showed numerically that the forced
entrainment is not always achieved, and analytic studies of this feature have also been
reported [2, 9, 26]. Our main interest is not restricted to periodic forcing terms. Instead, we
consider general forcing terms without assuming the periodicity of Fi in the first argument.
In the presence of heterogeneous forcing terms in (1.2), in general the difference ζi − ζj
and ζ̇i − ζ̇j do not converge to a constant value asymptotically. Thus, we cannot use the
concept of complete synchronization of employed in [11, 13]. For this reason, we need to
adopt a different notion of synchrony, namely “practical synchronization” roughly saying
that ζ-differences as values in R can be made as small by taking large coupling strength K
(See Definition 2.1). This clearly generalizes the concept of the complete synchronization
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in [11, 13]. For a motivation of practical synchronization and its relevance to biological and
engineering applications, we refer to Remark 2.1.

The main novelty of this paper is to provide two frameworks to ensure the practical
synchronization of system (1.2) in terms of the forcing Fi, coupling strength K, and initial
configurations ζ0 under homogeneous and heterogeneous forcing. (See Section 2.1)

The rest of this paper is organized as follows. In Section 2, we present several a priori
estimates for later sections and greenprovides the summary of framework and main results.
In Section 3, we provide a complete synchronization for homogeneous forcing, and in Sec-
tion 4, we study the practical synchronization of heterogeneous forcing. Finally, Section 5
summarizes our main results.

2. Preliminaries

In this section, we study the concept of practical synchronization, and provide several
basic estimates to be used in later sections. We first set the phase-diameter and energy as
follows. For a configuration ζ = (ζ1, · · · , ζN ) ∈ RN , we set

ζc :=
1

N

N∑
i=1

ζi, ζ̂i := ζi − ζc, D(ζ(t)) := max
1≤i,j≤N

|ζi − ζj |,

E(ζ) :=
1

N

N∑
i=1

|ζi|2, V(ζ) :=
1

N

N∑
i=1

|ζ̂i|2.

We define the concept of complete synchronization and practical synchronization for Ku-
ramoto oscillators as follows.

Definition 2.1. Let ζ = (ζ1, . . . , ζN ) be a dynamical solution to system (1.2)-(1.3).

(1) The dynamical solution ζ = ζ(t) shows asymptotic complete synchronization if and
only if the following condition holds:

lim
t→∞

(D(ζ(t)) +D(ζ̇(t))) = 0.

(2) The dynamical solution ζ = ζ(t) shows asymptotic practical synchronization if and
only if the following condition holds:

lim
K→∞

lim sup
t→∞

D(ζ(t)) = 0.

Remark 2.1. 1. In previous literature, the practical synchronization appeared in chaotic
systems [4, 10, 12, 20, 21, 22] and in the first-order linear consensus model [17]. In Definition
2.1, we closely follows the stronger notion of practical synchronization from [17] saying that
ζ-differences can be made arbitrary small by suitable controls. Note that in our system
(1.2), the magnitude of control terms which are the sinusoidal couplings is dominated by
the coupling strength K. In [4, 10, 12, 20, 21, 22, 29], the weaker concepts of practical
synchronization comparing the Definition 2.1 were used to denote the uniform boundedness
of phase differences in time but no restriction on the bound of the phase differences according
to the coupling K. The numerical experiment of [29] shows that large coupling strength is
necessary to obtain sufficiently small bound of phase diameter.

2. For the study of synchronization phenomena of Kuramoto oscillators with intrinsic
dynamics, complete synchronization cannot occur in general. To see this we consider the
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following two-oscillator system:

dζ1
dt

= sin(t− ζ1) +
K

2
sin(ζ2 − ζ1),

dζ2
dt

= sin(2t− ζ2) +
K

2
sin(ζ1 − ζ2).

(2.4)

Numerical simulation result in Figure 1 clearly shows that the differences ζ1−ζ2 and ζ̇1− ζ̇2
do not converges to zero so we cannot obtain complete synchronization in phase and fre-
quency [9, 11, 13]. However, we can observe that the differences become smaller as coupling
strength K is increased, in other words, this system is practically synchronized in the sense
of Definition 2.1

Lemma 2.1. [14] Suppose that the network (V (G), E(G)) is connected and the set {ζi} has
zero mean:

N∑
i=1

ζi = 0.

Then, we have

4L∗N
2E(ζ) ≤

∑
i,j∈E(G)

|ζi − ζj |2 ≤ 4N2E(ζ), t ≥ 0,

where the constant L∗ is given by

L∗ :=
1

1 + diam(G)|Ec(G)|
.

Here, Ec denotes the complement of the edge set E in V ×V and |Ec| denotes its cardinality.

Lemma 2.2. Suppose that the phase configuration ζ = (ζ1, · · · , ζN ) ∈ RN satisfies

D(ζ(t)) ≤ D0 < π.

Then, we have∑
(i,j)∈E

ψij(ζj − ζi) sin(ζj − ζi) ≥
C∞

D0

∑
1≤i,j≤N

|ζ̂j − ζ̂i|2 =
2N2C∞

D0
V(ζ).

In particular, if we have the additional zero sum condition
N∑
i=1

ζi = 0, then

∑
(i,j)∈E

ψij(ζj − ζi) sin(ζj − ζi) ≥
2N2C∞

D0
E(ζ),

where the constant C∞ is defined by relation (2.5).

(2.5) C∞ := L∗ψm sinD0, ψm := min
1≤i,j≤N

ψij .

Proof. We use the following elementary inequality

x sinx ≥ sinD0

D0
x2 on [−D0, D0] and

N∑
i=1

ζ̂i = 0,



PRACTICAL SYNCHRONIZATION ESTIMATES OF KURAMOTO OSCILLATORS 5

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

D
is

ta
n
c
e

(a) difference in state for K = 5
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(b) difference in rate of change for K = 5
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(c) difference in state for K = 10
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(d) difference in rate of change for K = 10
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(e) difference in state for K = 15
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(f) difference in rate of change for K = 15

Figure 1. ζ1 − ζ2 and ζ̇1 − ζ̇2 for K = 5, 10, 15
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to obtain ∑
(i,j)∈E

ψji(ζj − ζi) sin(ζj − ζi) ≥
sinD0

D0

∑
(i,j)∈E

ψji|ζ̂j − ζ̂i|2

≥ sinD0

D0
ψm

∑
(i,j)∈E

|ζ̂j − ζ̂i|2

≥ sinD0

D0
ψmL∗

∑
1≤i,j≤N

|ζ̂j − ζ̂i|2

=
sinD0

D0
ψmL∗

[ N∑
i,j=1

|ζ̂j |2 − 2
( N∑
i=1

ζ̂i

)( N∑
j=1

ζ̂j

)
+

N∑
i,j=1

|ζ̂i|2
]

=
2 sinD0

D0
ψmL∗N

N∑
j=1

|ζ̂j |2.

Here, the third inequality uses Lemma 2.1. �

Lemma 2.3. For T ∈ (0,∞], let ζ = ζ(t) be the solution to system (1.2) satisfying the a
priori condition on the time-interval [0, T ):

sup
t∈[0,T )

D(ζ(t)) ≤ D0 < π, sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)
<∞.

Then, the variance V(ζ) satisfies

dV(ζ)

dt
≤ D(F)

√
2
√
V(ζ)− 2

[KNC∞
D0

− sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)]
V(ζ), t ∈ [0, T ),

where D(F) is the diameter of the family of forcing terms {Fi}Ni=1:

D(F) := max
1≤i,j≤N

‖Fi − Fj‖L∞(R×R+).

Proof. We first note that the average ζc and its perturbation ζ̂i := ζi − ζc satisfy

ζ̇c =
1

N

N∑
i=1

Fi(ζi, t),

˙̂
ζi =

1

N

N∑
j=1

(
Fi(t, ζi)− Fj(t, ζj)

)
+K

N∑
j=1

ψji sin(ζ̂j − ζ̂i).

(2.6)

We multiply the second equation of (2.6) by 2ζ̂i, sum with respect to i, and divide by N to
find

dV(ζ)

dt
=

2

N2

N∑
i,j=1

ζ̂i(Fi(ζi, t)− Fj(ζj , t)) +
2K

N

N∑
i,j=1

ψjiζ̂i sin(ζ̂j − ζ̂i)

=
1

N2

N∑
i,j=1

(ζ̂i − ζ̂j)(Fi(ζi, t)− Fj(ζj , t))−
K

N

N∑
i,j=1

ψji(ζ̂j − ζ̂i) sin(ζ̂j − ζ̂i)

=: I11 + I12.

(2.7)

Here, we used the symmetry of the network, ψij = ψji, and the trick i ↔ j. We now
consider the two terms separately.
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• (Estimate of I11): There exists ζ∗ij on the segment between ζi and ζj such that

Fi(ζi, t)− Fj(ζj , t) = Fi(ζi, t)− Fj(ζi, t) + Fj(ζi, t)− Fj(ζj , t)

= Fi(ζi, t)− Fj(ζi, t) +
∂Fj
∂ζ

(ζ∗ij)(ζ̂i − ζ̂j),
(2.8)

where we used the fact that ζi − ζj = ζ̂i − ζ̂j .
Note that

I11 =
1

N2

N∑
i,j=1

(ζ̂i − ζ̂j)(Fi(ζi, t)− Fj(ζj , t))

=
1

N2

N∑
i,j=1

(ζ̂i − ζ̂j)(Fi(ζi, t)− Fj(ζi, t)) +
1

N2

N∑
i,j=1

∂Fj
∂ζ

(ζ∗ij)(ζ̂i − ζ̂j)2

≤ 1

N2
D(F)

N∑
i,j=1

|ζ̂i − ζ̂j |+
1

N2
sup
j,ζ,t

(∂Fj
∂ζ

(ζ, t)
) N∑
i,j=1

|ζ̂i − ζ̂j |2

≤ D(F)
√

2V(ζ) + 2 sup
j,ζ,t

(∂Fj
∂ζ

(ζ, t)
)
V(ζ),

where we used (2.8) and

N∑
i,j=1

|ζ̂i − ζ̂j |2 = 2N2V(ζ),
N∑

i,j=1

|ζ̂i − ζ̂j | ≤ N
( N∑
i,j=1

|ζ̂i − ζ̂j |2
) 1

2 ≤ N2
√

2V(ζ).

• (Estimate of I12): It follows from Lemma 2.2 that we have

(2.9) I12 ≤ −
2KNC∞

D0
V(ζ).

We combine (2.8)-(2.9) together with (2.7) to obtain the desired estimate. �

Remark 2.2. Note that for an all-to-all coupling with ψij = 1
N , we have

NC∞ = sinD0.

Lemma 2.4. For T ∈ (0,∞], let η = η(t) and ζ = ζ(t) be the corresponding solutions to
systems (1.1) and (1.2) with the same initial data ζ0 and satisfying the following a priori
conditions:

(1) The total energy for the decoupled system is bounded:

(2.10) sup
0≤t<T

E(η) = E∞(η, T ) <∞.

(2) The phase-diameter is confined to the half-circle region: there exists D0 ∈ (0, π)
such that

sup
t∈[0,T )

D(ζ(t)) ≤ D0.

Then, the coupled solution ζ = ζ(t) is bounded in the interval [0, T ), i.e., there exists
ζ∞(N,T ) ∈ [0,∞) such that

sup
0≤t<T

max
1≤i≤N

|ζi(t)| ≤ ζ∞(N,T ).
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Proof. We will show that the energy of the coupled system is smaller than that of the
decoupled system. Then, by the framework of (2.10), the energy for the decoupled system
is bounded, and we can derive the desired result. For the boundedness of E(ζ), we multiply
(1.2) by 2ζi and sum with respect to i to obtain

d

dt

N∑
i=1

ζ2i = 2
N∑
i=1

ζiFi(ζi, t) + 2K
∑
i,j

ψjiζi sin(ζj − ζi)

= 2

N∑
i=1

ζiFi(ζi, t)−K
N∑

i,j=1

ψji(ζj − ζi) sin(ζj − ζi)

≤ 2
N∑
i=1

ζiFi(ζi, t),

where we used Lemma 2.2 to find

N∑
i,j=1

ψji(ζj − ζi) sin(ζj − ζi) ≥ 0.

We now consider the solution to the decoupled system ηi with the same initial data:

η̇i = Fi(ηi, t), t > 0, ηi(0) = ζi0.

To obtain the time derivative of the energy functional of decoupled system E(η), we estimate

d

dt

N∑
i=1

η2i = 2

N∑
i=1

ηiFi(ηi, t)

Then, by the comparison principle of ODEs, we have

E(ζ) :=
1

N

N∑
i=1

ζ2i (t) ≤ 1

N

N∑
i=1

η2i (t) = E(η), t ∈ [0, T ).

Then, the a priori condition (2.10) yields

|ζi(t)| ≤
√
NE(ζ) ≤

√
NE(η) ≤

√
NE∞(η, T ) <∞.

�

2.1. The descriptions of main results. In this subsection, we summarize our two main
results on synchronization phenomena for homogeneous and heterogeneous forcing. We first
consider the the case where all forcing functions are the same, i.e., Fi = F for all 1 ≤ i ≤ N .
Therefore, the system (1.2) becomes

(2.11)

 ζ̇i = F (ζi, t) +K
N∑
j=1

ψij sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0,

For this homogeneous forcing, we have the following complete synchronization.
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Theorem 2.1. Suppose that the forcing function F and the coupling strength K satisfy

(i) D(ζ0) ≤ D0 < π.

(ii) K > D0 max
{

0, sup
ζ,t

(∂F
∂ζ

(ζ, t)
)/

NC∞
}
.

(2.12)

Then for any solution ζ = ζ(t) to the system (2.11), we have

V(ζ) ≤ V(ζ0)e
−C0t, t > 0.

where C0 is a positive constant defined by

C0 :=
2NKC∞

D0
− 2 sup

ζ,t

(∂F
∂ζ

(ζ, t)
)
> 0.

On the other hand, we consider heterogeneous forcing terms:

There exists a pair i 6= j such that Fi 6= Fj .

We adopt the following frameworkA on the family F = {F1, · · · , FN} of forcing and network
structure Ψ and the coupling strength K.

• (A1) max
i,j
‖Fi − Fj‖L∞(R×R+) <∞, sup

i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)
<∞,

• (A2) K >

D(F) +
D0√
N

sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)

√
NC∞

.

• (A3) The initial configuration satisfies the following boundedness condition:

D(ζ0) < D0 < π, V(ζ0) <
D2

0

2N
.

Theorem 2.2. Suppose that the frameworks A holds, then practical synchronization is
achieved:

lim
K→∞

lim sup
t→∞

D(ζ(t)) = 0.

3. Complete synchronization: Homogeneous forcing

In this section, we consider the special case where all forcing terms are equal, so that
each member of some given uncoupled system has identical dynamics:

Fi(ζ, t) = F (ζ, t), i = 1, · · · , N.

In this case, We recall that system (1.2) becomes

(3.13)

 ζ̇i = F (ζi, t) +K
N∑
j=1

ψij sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0.
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The average phase ζc and fluctuations ζ̂i = ζi − ζc satisfy

ζ̇c =
1

N

N∑
j=1

F (ζj , t),

˙̂
ζi =

1

N

N∑
j=1

(F (ζi, t)− F (ζj , t)) +K
N∑
j=1

ψij sin(ζ̂j − ζ̂i).

(3.14)

Lemma 3.1. Suppose that the forcing function F and the coupling strength K satisfy

D(ζ0) ≤ D0 < π, V(ζ0) <
D2

0

2N
,

K > D0 max
{

0, sup
ζ,t

(∂F
∂ζ

(ζ, t)
)/

NC∞
}
.

(3.15)

Then, the phase-diameter D(ζ(t)) is uniformly bounded by D0, i.e.,

sup
0≤t<∞

D(ζ(t)) ≤ D0.

Proof. We define

T := {T : D(ζ(t)) < D0, ∀t ∈ [0, T )} and T∗ := sup T ,
and claim that

T∗ =∞.

Proof of claim. We split the proof into two parts. In Step A, we show that the set T is
nonempty, and in Step B, we show that T∗ = ∞ using the differential inequality obtained
in Lemma 2.3.

• (Step A). By the continuity of D(ζ(t)), there exists a δ > 0 such that

D(ζ(t)) < D0, t ∈ [0, δ).

Therefore, δ ∈ T and T 6= ∅.
• (Step B). Suppose not, i.e., T∗ <∞. Then, we should have

(3.16) D(ζ(t)) < D0, t ∈ [0, T∗), lim
t→T∗−

D(ζ(t)) = D0.

We now use Gronwall’s inequality in Lemma 2.3 with D(F) = 0:

dV(ζ)

dt
≤ −2

[KNC∞
D0

− sup
ζ,t

(∂F
∂ζ

(ζ, t)
)]

︸ ︷︷ ︸
>0 by (3.15)

V(ζ), on [0, T ).

This again yields

V(ζ) < V(ζ0).

On the other hand, note that for t ∈ [0, T∗).

|ζ̂i(t)− ζ̂j(t)| ≤
√

2(|ζ̂i(t)|2 + |ζ̂j(t)|2) ≤
√

2NV(ζ) <
√

2NV(ζ0) < D0.

Hence, we have

lim
t→T∗−

D(ζ(t)) < D0,
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which contradicts (3.16). Therefore, T∗ =∞, and we obtain the desired uniform bound for
D(ζ(t)). �

We are now ready to prove the theorem 2.1.

The proof of Theorem 2.1. We multiply the second equation in (3.14) by 2ζ̂i, sum with
respect to i, and divide by N to obtain

d

dt
V(ζ) =

2

N2

∑
i,j

ζ̂i(F (ζi, t)− F (ζj , t)) +
2K

N

∑
i,j

ψij ζ̂i sin(ζ̂j − ζ̂i)

= − 2

N2

∑
i,j

ζ̂j(F (ζi, t)− F (ζj , t))−
2K

N

∑
i,j

ψij ζ̂j sin(ζ̂j − ζ̂i)

= − 1

N2

∑
i,j

(ζ̂j − ζ̂i)(F (ζi, t)− F (ζj , t))−
K

N

∑
i,j

ψij(ζ̂j − ζ̂i) sin(ζ̂j − ζ̂i)

=
1

N2

∑
i,j

∂F

∂ζ
(ζ∗ij(t), t)|ζ̂j − ζ̂i|2 −

K

N

∑
i,j

ψij(ζ̂j − ζ̂i) sin(ζ̂j − ζ̂i)

≤ 1

N2

∑
i,j

∂F

∂ζ
(ζ∗ij(t), t)|ζ̂j − ζ̂i|2 −

KC∞

ND0

∑
i,j

|ζ̂j − ζ̂i|2

≤
[ 1

N2
sup
ζ,t

∂F

∂ζ
(ζ, t)− KC∞

ND0

]∑
i,j

|ζ̂j − ζ̂i|2

= −2
[NKC∞

D0
− sup

ζ,t

∂F

∂ζ
(ζ, t)

]
V(ζ)

= −C0V(ζ),

where ζ∗ij(t) is a point in the interval connecting ζi(t) and ζj(t).

Remark 3.1. Note that for the homogeneous forcing case if the identical forcing func-
tion F is non-increasing, i.e., ∂F

∂ζ ≤ 0, we may allow K to be negative, as long as C0 is

positive. Although the negative coupling strength reduce the synchronization, the effect of
non-increasing forcing function F accelerate the synchronization.

4. Practical synchronization: Heterogeneous forcing

In this section, we present several sufficient conditions for practical synchronization in
terms of initial configurations, parameters and forcing terms.

4.1. Bounded forcing. We first consider the forcings F = {F1, · · · , FN} satisfying the
following boundedness conditions:

(4.17) D(F) = max
i,j
‖Fi − Fj‖L∞(R×R+) <∞, sup

i,ζ,t

∂Fi
∂ζ

(ζ, t) <∞.

Note that the following forcings satisfy the boundedness condition (4.17):

Fi(ζi, t) = Ωi, Fi(ζi, t) = Ai sin(σt− ζi).

Lemma 4.1. Suppose that the framework A holds. Then, the phase-diameter D(ζ(t)) is
uniformly bounded by D0, i.e.,

sup
0≤t<∞

D(ζ(t)) ≤ D0.
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Proof. We define

T := {T : D(ζ(t)) < D0, ∀t ∈ [0, T )} and T∗ := sup T ,

and claim that

T∗ =∞.

Proof of claim. We split the proof into two parts. In Step A, we show that the set T is
nonempty, and in Step B, we show that T∗ = ∞ using the differential inequality obtained
in Lemma 2.3.

• (Step A). By the continuity of D(ζ(t)), there exists a δ > 0 such that

D(ζ(t)) < D0, t ∈ [0, δ), i, j = 1, 2, . . . , N.

Therefore, δ ∈ T and T 6= ∅.
• (Step B). Suppose not, i.e., T∗ <∞. Then, we should have

(4.18) D(ζ(t)) < D0, t ∈ [0, T∗), lim
t→T∗−

D(ζ(t)) = D0.

We again use Gronwall’s inequality in Lemma 2.3:

(4.19)
dV(ζ)

dt
≤ D(F)

√
2
√
V(ζ)− 2

[KNC∞
D0

− sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)]
V(ζ), on [0, T ).

Note that the condition on K guarantees that the coefficient of the second term on the r.h.s.
of (4.19) is positive.

Y :=
√
V(ζ), t ≥ 0.

Then, it follows from (4.19) that Y (t) satisfies

(4.20)
dY

dt
≤ D(F)√

2
−
[KNC∞

D0
− sup

i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)]
Y, t ∈ [0, T∗].

By Gronwall’s lemma, we then have

Y (t) ≤ D(F)/
√

2

KNC∞

D0
− supi,ζ,t

(
∂Fi
∂ζ (ζ, t)

)
+
[
Y (0)− D(F)/

√
2

KNC∞

D0
− supi,ζ,t

(
∂Fi
∂ζ (ζ, t)

)]
× exp

[
−
(KNC∞

D0
− sup

i,ζ,t

(∂Fi
∂ζ

(ζ, t)
))
t
]
.

(4.21)

This implies

(4.22) Y (t) ≤ max
{
Y (0),

D(F)/
√

2

KNC∞

D0
− supi,ζ,t

(
∂Fi
∂ζ (ζ, t)

)}.
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On the other hand, note that the condition on K and the initial configuration are equivalent
to saying that the r.h.s. of the above relation is less than or equal to D0√

2
.

Y (0) =

√
V(ζ̂0) <

D0√
2N

, and

D(F)/
√

2

KNC∞

D0
− supi,ζ,t

(
∂Fi
∂ζ (ζ, t)

) < D0√
2N

⇐⇒ K >
D(F) + D0√

N
supi,ζ,t

(
∂Fj

∂ζ (ζ, t)
)

√
NC∞

.

(4.23)

Thus, we combine (4.22) and (4.23) to obtain

Y (t) <
D0√
2N

, i.e., V(ζ) <
D2

0

2N
, t ∈ [0, T∗).

This again yields for t ∈ [0, T∗)

(4.24) |ζi(t)− ζj(t)| = |ζ̂i(t)− ζ̂j(t)| ≤
√

2(|ζ̂i(t)|2 + |ζ̂j(t)|2) ≤
√

2NV(ζ) < D0.

Hence, we have

lim
t→T∗−

D(ζ(t)) < D0,

which contradicts (4.18). Therefore T∗ = ∞ and we obtain the desired uniform bound for
D(ζ(t)). �

We are now ready to provide our second main theorem by combining the results of
Lemmas 2.3 and 4.1.

The proof of Theorem 2.2. We repeat the argument presented in Lemma 4.1 to derive the
estimate

Y (t) =
√
V(ζ) ≤ D(F)/

√
2

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
)

+
[
Y (0)− D(F)/

√
2

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
)]

× exp
[
−
(KNC∞

D0
− sup

j,ζ,t

(∂Fj
∂ζ

(ζ, t)
))
t
]
.

By letting t→∞, we obtain

lim sup
t→∞

√
V(ζ) ≤ D(F)/

√
2

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
) .

On the other hand, from (4.24), note that

|ζi(t)− ζj(t)| ≤
√

2NV(ζ).

This implies

lim sup
t→∞

|ζi(t)− ζj(t)| ≤ lim sup
t→∞

√
2NV(ζ) ≤ D(F)

√
N

KNC∞

D0
− supj,ζ,t

(
∂Fj

∂ζ (ζ, t)
)

which leads to the desired result.
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Remark 4.1. 1. Complete synchronization estimates for the Kuramoto model have been
investigated in [7, 8, 11, 15, 16, 25].

2. For the Kuramoto model with Fi = Ωi and ψij = 1
N , we have

D(F) = D(Ω), sup
i,ζ,t

(∂Fj
∂ζ

(ζ, t)
)

= 0, C∞ =
sinD0

N
.

Thus, the conditions on Ωi,K and the initial configuration ζ0 in Lemma 4.1 reduce to

D(Ω) <∞, K >
D(Ω)

√
N

sinD0
, D(ζ0) < D0 < π, V(ζ0) <

D2
0

2N
,

which are weaker than in [7].
3. Note that for the linear stable dynamics

(4.25) Fi(ζi, t) = aiζi, ai ≤ 0,

we have

D(F) =∞, sup
i,ζ,t

(∂Fi
∂ζ

(ζ, t)
)

= max
i
ai <∞.

Thus, Theorem 2.2 cannot be applied to this simple case where the decoupled system has
bounded solutions only. However, if we check the proof of Lemma 4.1 more carefully, what
we need is boundedness over the bounded phase space, not over the whole space R for ζi, i.e.,
once the coupled system (1.2) has only bounded solutions that are confined to the compact
state space N , then we can replace D(F) = max

i,j
‖Fi − Fj‖L∞(R×R+) with a more relaxed

diameter D̄(F) := maxi,j ‖Fi −Fj‖L∞(N×R+). With this relaxed definition for the diameter
of F , we can still use the result of Theorem 2.2 for (4.25).

4. For a linear-time varying multi-agent systems, the practical synchronization has been
studied in [17].

Below, we will show that if the uncoupled system (1.1) has a bounded solution for a
given initial configuration, then the solution to the coupled system (1.2) exhibits practical
synchronization.

Corollary 4.1. Assume that the following conditions hold.

(1) The initial configuration satisfies the following boundedness condition:

D(ζ0) < D0 < π, V(ζ0) <
D2

0

2N
.

(2) For a given family of forcing F = {F1, · · · , FN}, the decoupled system

ζ̇i = Fi(ζi, t), t > 0, ζi(0) = ζi0, t = 0

has the globally bounded solution:

ζ ∈ N : compact subset of RN .
(3) The family of forcing F , network structure, and coupling strength satisfy the condi-

tions:

D̄(F) <∞, sup
i,ζ,t

(∂Fj
∂ζ

(ζ, t)
)
<∞, K >

D̄(F)
√
N +D0

NC∞
.

Then, the practical synchronization holds:

lim
K→∞

lim
t→∞

D(ζ(t)) = 0.
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Proof. It follows from Lemma 2.4 that the state space for ζ is bounded, so we can use the
modified diameter D̄(F):

D̄(F) := max
1≤i,j≤N

‖Fi − Fj‖L∞(N×R+).

to apply the same argument as in Theorem 2.2. This completes the proof. �

Remark 4.2. Corollary 4.1 covers the case where Fi is given by the gradient field of the
double well potential, i.e.,

Fi(ζ) = −∂ζϕi, ϕi(ζ) = ai

(ζ2
2
− ζ4

4

)
, ai < 0.

In this case, the solution to the decoupled system is bounded.

4.2. Unbounded forcing. In this subsection, we consider the case where the decoupled
system has bounded and unbounded solutions at the same time, and see that the unbounded
solutions can be turned into bounded solutions by coupling with bounded solutions.

Consider a nonlinear system with linear intrinsic dynamics Fi(ζ, t) = piζ. Then the
system (1.2) with all-to-all coupling ψij = 1

N becomes

(4.26)

 ζ̇i = piζi +
K

N

N∑
j=1

sin(ζj − ζi), t > 0;

ζi(0) = ζi0 t = 0,

where pi is a constant satisfying the negative sum condition:

(4.27)

N∑
i=1

pi < 0.

Note that system (4.26) has a trivial equilibrium solution ζe:

ζe := (0, · · · , 0).

When the coupling is turned off, i.e., K = 0, the state ζi can go to infinity or zero exponen-
tially fast, depending on the sign of pi. If all pi are negative, then the uncoupled dynamics
have a bounded solution, and this case can be covered by Corollary 4.1. Thus without loss
of generality, we may assume that at least one of the pi is positive. In a near-equilibrium
regime ζ ≈ ζe = 0, the dynamics of the nonlinear system (4.26) can be studied via the linear
system near ζe:

(4.28) ζ̇i = piζi +
K

N

N∑
j=1

(ζj − ζi), t > 0.

Before we present a uniform boundedness of ζ to the linear system (4.28) for sufficiently
large K, we consider the following dynamics for two oscillators:

ζ̇1 = p1ζ1 +
K

2
(ζ2 − ζ1), t > 0,

ζ̇2 = p2ζ2 +
K

2
(ζ1 − ζ2).

(4.29)

The linear system (4.29) can be rewritten in matrix form as

d

dt

[
ζ1
ζ2

]
= M2

[
ζ1
ζ2

]
, M2 :=

[
p1 − K

2
K
2

K
2 p2 − K

2

]
.
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By direct calculation, the matrix M2 has two real eigenvalues:

λ+ =
p1 + p2 −K +

√
(p1 − p2)2 +K2

2
, λ− =

p1 + p2 −K −
√

(p1 − p2)2 +K2

2
.

It is easy to see that λ− < 0 for sufficiently large K. On the other hand, note that

λ+ < 0 ⇐⇒ p1 + p2 < 0, K >
2p1p2
p1 + p2

> 0.

Thus, if p1 + p2 < 0, K > 2p1p2
p1+p2

, then both ζ1 and ζ2 decay to zero so that we have

practical synchronization. Before we proceed to the general case, we consider the two
explicit examples corresponding to the case p1 + p2 > 0. In this case, we will not have
practical synchronization.

• Example 1 (p1, p2) = (1, 2). In this case, system (4.29) becomes

ζ̇1 = ζ1 +
K

2
(ζ2 − ζ1), t > 0,

ζ̇2 = 2ζ2 +
K

2
(ζ1 − ζ2).

(4.30)

By direct calculation, the solution (ζ1, ζ2) satisfies

|ζ2(t)− ζ1(t)| = Ceλ+(K)t →∞, t→∞.
Thus, we do not have practical synchronization.

• Example 2 (p1, p2) = (−1, 2).

ζ̇1 = −ζ1 +
K

2
(ζ2 − ζ1), t > 0,

ζ̇2 = 2ζ2 +
K

2
(ζ1 − ζ2).

(4.31)

Again, by direct calculation, we have

|ζ2(t)− ζ1(t)| = Ceλ+(K)t →∞, t→∞.
Thus, we can conclude that with p1 + p2 > 0, system (4.29) cannot have a practical syn-
chronization.

We now return to the linear system (4.28) associated with (4.26) rewritten in matrix
form:

(4.32) ζ̇ = MNζ, t > 0, ζ = (ζ1, · · · , ζN ),

where

(4.33) MN :=


p1 − N−1

N K K
N . . . K

N
K
N p2 − N−1

N K . . . K
N

...
...

. . .
...

K
N

K
N . . . pN − N−1

N K


Note that the coefficient matrix MN is symmetric, so that all eigenvalues of MN are real.
Below, we will show that, under the condition (4.27), if the coupling strengthK is sufficiently
large, then all eigenvalues of MN become negative so that the trivial equilibrium solution to
(4.32) is exponentially stable. For this, we recall several lemmas in relation to eigenvalues
of this linearized system.
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Lemma 4.2 (Weyl’s inequality [33]). Let M,H, and P be Hermitian matrices satisfying
M = H + P , and suppose {µ1, . . . , µN}, {ν1, . . . , νN} and {ρ1, . . . , ρN} are (as known) real
eigenvalues of M,H, and P , respectively, such that

µ1 ≥ · · · ≥ µN , ν1 ≥ · · · ≥ νN , ρ1 ≥ · · · ≥ ρN .

Then, the following inequalities hold:

µj ≤ νi + ρj−i+1, 1 ≤ i, j ≤ N and i ≤ j.

Proof. For a proof, we refer to Theorem III.2.1 in [3]. �

Lemma 4.3. The matrix (4.33) has a determinant of the form

detMN =
(−1)N−1

N

( N∑
i=1

pi

)
KN−1 +O(KN−2) as a polynomial in K.

Proof. The proof is given in Appendix A. �

Now, we are ready to prove the negativity of eigenvalues of MN . For a matrix A, let
σ(A) denote the set of eigenvalues of A, i.e., the spectrum of A.

Proposition 4.1. Let ζ = (ζ1, · · · , ζN ) be a global solution to system (4.28) with negative
sum condition (4.27). Then, for a sufficiently large K, the solution ζ converges to zero
exponentially fast, independent of the initial configuration ζ0.

Proof. For the desired estimate, it suffices to show that the eigenvalues for the coefficient
matrix MN are negative:

0 > µ1 > µ2 > · · · > µN .

Without loss of generality, we may assume that p1 ≥ p2 ≥ . . . ≥ pN . Suppose that
σ(MN ) = {µ1, . . . , µN} is arranged in descending order, and set HN and PN as

HN :=


K
N

K
N . . . K

N
K
N

K
N . . . K

N
...

...
. . .

...
K
N

K
N . . . K

N

 , PN :=


p1 −K 0 . . . 0

0 p2 −K . . . 0
...

...
. . .

...
0 0 . . . pN −K


so that

MN = HN + PN .

Then, it is easy to see that the spectra of the matrices HN and PN are given in descending
order:

σ(HN ) = {K, 0, . . . , 0}, σ(PN ) = {p1 −K, p2 −K, . . . , pN −K}.
It follows from Lemma 4.2 that we have

µ2 ≤ K + (p2 −K) = p2 and µ2 ≤ 0 + (p1 −K) = p1 −K.

We now set K to be sufficiently large satisfying

(4.34) K > p1.

Therefore, under the condition (4.34), µ2 is negative, and hence µi, i = 3, · · · , N are also
negative:

(4.35) 0 > µ2 ≥ µ3 ≥ · · · ≥ µN .
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Now, we need to show that µ1 is negative. Since the determinant of a matrix is the product
of all eigenvalues, it is enough to show that

µ1 < 0 if and only if detMN

{
< 0, if N is odd,
> 0, if N is even.

In Lemma 4.3, for sufficiently large K,

detMN = µ1µ2 · · ·µN
= µ1(−1)N−1|µ2| · · · |µN |

≈ (−1)N−1

N

( N∑
i=1

pi

)
KN−1 =

(−1)N

N

∣∣∣ N∑
i=1

pi

∣∣∣KN−1.

This yields that, for sufficiently large K,

(4.36) µ1 < 0.

It follows from (4.35)-(4.36) that all eigenvalues of MN are negative for sufficiently large
K. This implies that the solution to the linear system (4.28) decays to zero exponentially
fast. �

5. Conclusion

The dynamics of an oscillatory system over a network are often influenced by internal and
external forces, e.g., the daily cycling of light and darkness affecting human sleep rhythms.
In this case, due to forcing effects, all relative distances and relative rate of changes between
the states of units do not asymptotically approach a constant. Thus, we can at least expect
that all states are confined to some bounded region. The question is whether we can control
this bounded region by the strength of the coupling strength K. Indeed, we have shown that
the diameter of the state set is of order O(K−1) for sufficiently large K ′s, i.e., “practical
synchronization” occurs asymptotically for sufficiently large K. In particular, Theorem 2.2
implies that, if the forcing functions are C1 and the state space is bounded, then practical
synchronization can be achieved for a sufficiently large coupling strength and some restricted
class of initial configurations.
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Appendix A. Proof of Lemma 4.3

In this section, we provide the proof of Lemma 4.3 using elementary row operations and
the Laplace expansion.

detMN = det


p1 − N−1

N K K
N

K
N . . . K

N
K
N p2 − N−1

N K K
N . . . K

N
K
N

K
N p3 − N−1

N K . . . K
N

...
...

...
. . .

...
K
N

K
N

K
N . . . pN − N−1

N K



= det


p1 − N−1

N K K
N

K
N . . . K

N
−(p1 −K) p2 −K 0 . . . 0
−(p1 −K) 0 p3 −K . . . 0

...
...

...
. . .

...
−(p1 −K) 0 0 . . . pN −K



=(p1 −
N − 1

N
K) det


p2 −K 0 . . . 0

0 p3 −K . . . 0
...

...
. . .

...
0 0 . . . pN −K



−(−1)(p1 −K) det


K
N

K
N

K
N . . . K

N
0 p3 −K 0 . . . 0
0 0 p4 −K . . . 0
...

...
...

. . .
...

0 0 0 . . . pN −K



+(−1)(p1 −K) det


K
N

K
N

K
N . . . K

N
p2 −K 0 0 . . . 0

0 0 p4 −K . . . 0
...

...
...

. . .
...

0 0 0 . . . pN −K

+ · · ·

+(−1)N−1(−1)(p1 −K) det


K
N

K
N . . . K

N
K
N

p2 −K 0 . . . 0 0
0 p3 −K . . . 0 0
...

...
. . .

...
...

0 0 . . . pN−1 −K 0


=:M1 + · · ·+MN .

We next estimate the Mi separately.
• (Estimate of M1):

M1 =
(
p1 −

N − 1

N
K
) N∏
i=2

(pi −K)

= (−1)N
N − 1

N
KN
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+ {(−1)N−1p1 + (−1)N−1
N − 1

N
(
N∑
i=2

pi)}KN−1 +O(KN−2).

• (Estimate of M2):

M2 = (p1 −K)
K

N
(p3 −K)(p4 −K) · · · (pN −K)

=
1

N
(−1)N−1KN + (−1)N−2(p1 + p3 + p4 + · · ·+ pN )KN−1 +O(KN−2).

• (Estimate of M3):

M3 = (p1 −K)
K

N
(p2 −K)(p4 −K) · · · (pN −K)

=
1

N
(−1)N−1KN + (−1)N−2(p1 + p2 + p4 + · · ·+ pN )KN−1 +O(KN−2).

...

• (Estimate of MN ):

MN = (p1 −K)
K

N
(p2 −K)(p3 −K) · · · (pN−1 −K)

=
1

N
(−1)N−1KN

+ (−1)N−2(p1 + p2 + p3 + · · ·+ pN−1)K
N−1 +O(KN−2).

Hence, we have

detMN =
N∑
i=1

Mi =
(−1)N−1

N
(p1 + · · ·+ pN )KN−1 +O(KN−2).
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